Abstract
The article presents a dynamic design approach of an ultra-precision machine tool based on the morphology requirements of the workpiece. Compared with common parts, optical parts not only have as many high requirements for surface finish and flatness, but also topographic properties, which leads to a big difference in design with traditional machine tools. This approach, from the topographic properties and functional requirements of the workpiece, demonstrates how to design and analyze the kinematic chain and configuration of the machine tool. Then, a finite element model and mathematical model are established to predict the topographic properties of the workpiece. The design and optimization of an ultra-precision flycutting machine tool is employed as a case study to elaborate the approach in detail. Preliminary machining trials have been carried out and provided evidence of the approach being helpful to design and optimize the ultra- precision machine tool used for optical parts machining.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have