Abstract
Presented is an initial discussion on dynamic simulation of tsunami air bag deployment in connection with a number of smart inflatable and deployable structures, called tsunami air bags (TAB) that can be rather quickly set up and strongly anchored to the ocean floor to withstand the impact of a tsunami wave and thus protect the buildings and structures on shore. These dedicated inflatable smart structures are designed such that upon tsunami impact they can perform two smart deployment tasks. The first one is for the structure to deploy in the form of a porous structure containing internal folds and pockets and reconfigure due to tsunami impact to perform energy absorption by forcing the tsunami waves to pass through the porous inflatable structure forcing the tsunami waves to lose kinetic energy due to viscous drag and pressurizing the TABs. The second task is related to a special de sign of the inflatable structure that causes it to deploy to either further vertically rise or become a hollow inflatable dam upon the tsunami impact. In these endeavors a wave generation channel was designed and constructed to perform experiments and to simulate tsunami wave impacts on inflatable structures deploying from an underwater location. The initial observation indicates that TABs have a great potential to mitigate tsunami impacts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have