Abstract

In intensive care patients who receive ventilatory support or full mechanical ventilation, valuable information can be drawn from gas exchange measurements. In this setting, the most favorable method for gas exchange measurement is by simultaneous recording of gas concentrations and gas flow, and by time resolved multiplication and accumulation. This paper presents a new method to compensate for the signal delay time which occurs when a sampling capillary is used for measuring gas concentrations with a respiratory mass spectrometer or some equivalent sidestream gas analyzer. The signal delay of gas concentrations must be accurately compensated to avoid error accumulation in gas exchange calculation. A delay time can be easily measured with a test gas in a laboratory setup and be readily compensated for during the measurements in a ventilated patient. This is a standard procedure which gives reasonable results under normal conditions. Special attention is however required in cases where the gas viscosity changes due to large changes in gas composition, e.g., those used for diagnostic breathing or ventilatory maneuvers. Such changes of viscosity will influence the delay time of the capillary, because they affect its flow resistance. As a consequence they will degrade the quality of measurements when done with a simple fixed delay compensation. The method described here consists of an algorithm which enables compensation for such a temporally changing delay time due to changes in gas composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.