Abstract

Lipid droplets (LDs) are organelles featuring in intracellular storage of neutral lipids, which are involved with many biological processes. Monitoring the dynamical cyclic behaviors of cellular LDs poses great importance for early disease diagnosis. Herein, two coumarin-based LDs-specific fluorescence probes exhibited "turn-on" and two-photon fluorescence triggered by breaking their aggregation states. By virtue of establishing oil/water emulsions model to simulate LDs, the behaviors of "turn-on" fluorescence were elucidated, which benefited for the enhancement of selectivity of the probes to LDs. Then, we highlight a LDs-specific coumarin-based two-photon probe (L1) with high photo-stability to monitor the dynamic cyclic behaviors of LDs in cells, unraveling the changes of LDs quantity during lipophagy and the reproduction of LDs to prevent lipotoxicity. We believe the probe offers a convenient way to investigate the biology of LDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call