Abstract

The reaction kinetics of epoxy resin cured with stoichiometric amounts of amine-like structure and loaded with different levels of Cloisite 25A (C25A), has been studied by dynamic differential scanning calorimetry (DSC) to investigate the effect of the nano-organoclay particles on the kinetic parameters of the cure reaction. The kinetic analysis of non-isothermal cure showed that the Šesták–Berggren autocatalytic model is suitable to describe the kinetics of these reactions. Analysis of DSC data indicated that the presence of the C25A filler has a very small effect on the kinetics of cure. Thermogravimetric analyses showed higher thermal stability for the epoxy nanocomposites compared to pure epoxy. The activation energy of degradation process was estimated using both Kissinger and Ozawa methods. The epoxy nanocomposites loaded with 10 wt% C25A proved to exhibit high activation energy, indicating that C25A acquired a stabilizing effect upon the decomposition of polymer matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.