Abstract

We used smooth muscle alpha-actinin to evaluate the contribution of cross-linker dynamics to the mechanical properties of actin filament networks. Recombinant actin-binding domain (residues 2-269) binds actin filaments with a Kd of 1 microM at 25 degrees C, 20 times stronger than actin-binding domain produced by thermolysin digestion of native alpha-actinin (residues 25-257). Between 8 and 25 degrees C the rate constants for recombinant actin-binding domain to bind to (0.8-2.7 microM-1 s-1) and dissociate from (0.2-2.4 s-1) actin filaments depend on temperature. At 8 degrees C actin filaments cross-linked with alpha-actinin are stiff and nearly solid, whereas at 25 degrees C the mechanical properties approach those of actin filaments alone. In these experiments, high actin concentrations kept most of the alpha-actinin bound to actin and temperature varied a single parameter, cross-linker dynamics, because the mechanical properties of pure actin filaments (a viscoelastic gel) or biotinylated actin filaments cross-linked irreversibly by avidin (a stiff viscoelastic solid) depend little on temperature. These results show that the rate of exchange of dynamic cross-links between actin filaments is an important determinant of the mechanical properties of the networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.