Abstract
Crack fronts deform due to heterogeneities, and inspecting these deformations can reveal local variations of material properties, and help predict out-of-plane damage. Current models neglect the influence of a finite dissipation length scale behind the crack tip, called the process zone size. The latter introduces scale effects in the deformation of the crack front, that are mitigated by the dynamics of the crack. We provide and numerically validate a theoretical framework for dynamic crack-front deformations in heterogeneous cohesive materials, a key step toward identifying the effective properties of a microstructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.