Abstract

We calculate the static and dynamic single-particle correlation functions in one-dimensional (1D) trapped Bose gases and discuss experimental measurements that can directly probe such correlation functions. Using a quantized hydrodynamic theory for the low energy excitations, we calculate both the static and dynamic single-particle correlation functions for a 1D Bose gas that is a phase-fluctuating quasi-condensate. For the static (equal-time) correlation function, our approximations and results are equivalent to those of Petrov, Shlyapnikov and Walraven. The Fourier transform of the static single-particle correlation function gives the momentum distribution, which can be measured using Doppler-sensitive Bragg scattering experiments on a highly elongated Bose gas. We show how a two-photon Raman out-coupling experiment can measure the characteristic features of the dynamic or time-dependent single-particle correlation function of a 1D Bose quasi-condensate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call