Abstract

We consider dynamic (non-equal-time) correlation functions of local observables after a quantum quench. We show that, in the absence of long-range interactions in the final Hamiltonian, the dynamics is determined by the same ensemble that describes static (equal-time) correlations. For many integrable models, static correlation functions of local observables after a quantum quench relax to stationary values, which are described by a generalized Gibbs ensemble. The same generalized Gibbs ensemble then determines dynamic correlation functions, and the basic form of the fluctuation dissipation theorem holds, although the absorption and emission spectra are not simply related as in the thermal case. For quenches in the transverse field Ising chain, we derive explicit expressions for the time evolution of dynamic order parameter correlators after a quench.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call