Abstract

The prognostic value of dynamic contrast-enhanced MR imaging on nonenhancing T2 high-signal-intensity lesions in patients with glioblastoma has not been thoroughly elucidated to date. We evaluated the temporal change and prognostic value for progression-free survival of dynamic contrast-enhanced MR imaging-derived pharmacokinetic parameters on nonenhancing T2 high-signal-intensity lesions in patients with glioblastoma before and after standard treatment, including gross total surgical resection. This retrospective study included 33 patients who were newly diagnosed with glioblastoma and treated with gross total surgical resection followed by concurrent chemoradiation therapy and adjuvant chemotherapy with temozolomide in a single institution. All patients underwent dynamic contrast-enhanced MR imaging before surgery as a baseline and after completion of maximal surgical resection and concurrent chemoradiation therapy. On the whole nonenhancing T2 high-signal-intensity lesion, dynamic contrast-enhanced MR imaging-derived pharmacokinetic parameters (volume transfer constant [K trans], volume of extravascular extracellular space [v e], and blood plasma volume [vp ]) were calculated. The Cox proportional hazards regression model analysis was performed to determine the histogram features or percentage changes of pharmacokinetic parameters related to progression-free survival. Baseline median K trans, baseline first quartile K trans, and posttreatment median K trans were significant independent variables, as determined by univariate analysis (P < .05). By multivariate Cox regression analysis including methylation status of O6-methylguanine-DNA methyltransferase, baseline median K trans was determined to be the significant independent variable and was negatively related to progression-free survival (hazard ratio = 1.48, P = .003). Baseline median K trans from nonenhancing T2 high-signal-intensity lesions could be a potential prognostic imaging biomarker in patients undergoing gross total surgical resection followed by standard therapy for glioblastoma.

Highlights

  • BACKGROUND AND PURPOSEThe prognostic value of dynamic contrast-enhanced MR imaging on nonenhancing T2 high-signal-intensity lesions in patients with glioblastoma has not been thoroughly elucidated to date

  • Baseline median Ktrans from nonenhancing T2 high-signal-intensity lesions could be a potential prognostic imaging biomarker in patients undergoing gross total surgical resection followed by standard therapy for glioblastoma

  • Certain nonenhancing infiltrative tumor cells may remain after surgical resection and Please address correspondence to Seung Hong Choi, MD, PhD, Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea; e-mail: verocay@snuh.org

Read more

Summary

Introduction

BACKGROUND AND PURPOSEThe prognostic value of dynamic contrast-enhanced MR imaging on nonenhancing T2 high-signal-intensity lesions in patients with glioblastoma has not been thoroughly elucidated to date. We evaluated the temporal change and prognostic value for progression-free survival of dynamic contrast-enhanced MR imaging–derived pharmacokinetic parameters on nonenhancing T2 high-signal-intensity lesions in patients with glioblastoma before and after standard treatment, including gross total surgical resection

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.