Abstract

By means of the new techniques of magnetically driven quasi-isentropic compression based on compact capacitor bank facility CQ-1.5 developed by us, the dynamic compression of two mixed HMX-based plastic bonded explosives (PBX) explosives is researched under ramp wave loading. A pressure of 5–8 GPa over 600–800 ns is realized on explosive samples by optimizing loading electrodes and controlling charging voltages of CQ-1.5. And loading strain rates vary from 10 5 1/s to 10 6 1/s along the thickness of explosive samples. For experiments, the particle velocities of interface between explosive samples with different thicknesses and LiF windows are measured to determine material response by a displacement interferometry technique of Doppler pins system (DPS), and the experimental compression isentropes of researched explosives are obtained using the data processing method of backward integration and Lagrangian analysis for quasi-isentropic compression experiments, which are in agreement with the theoretical isentropes based on Mie-Gruneisen equation of state (EOS) and the results by Baer. For simulations, one-dimensional hydrodynamics code SSS is used to analyze the dynamic process, and the calculated results of particle velocity of interfaces are consistent with the experimental ones. Finally, one of the explosive constituents, the binder fluoride rubber F 2311 , is also investigated using this technique, and some properties under ramp wave loading are gained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.