Abstract

A pulsed power generator CQ-4 was developed to characterize dynamic behaviors of materials under ramp wave loading, and to launch high velocity flyer plates for shock compression and hypervelocity impact experiments of materials and structures at Institute of Fluid Physics, China Academy of Engineering Physics. CQ-4 is composed of twenty capacitor and primary discharge switch modules with total capacitance of 32 μF and rated charging voltage of 100 kV, and the storage energy is transmitted by two top and bottom parallel aluminum plates insulated by twelve layers of polyester film with total thickness of 1.2 mm. Between capacitor bank and chamber, there are 72 peaking capacitors with total capacitance of 7.2 μF and rated voltage of 120 kV in parallel, which are connected with the capacitor bank in parallel. Before the load, there is a group of seven secondary self-breaking down switches connected with the total circuit in series. The peaking capacitors and secondary switches are used to shape the discharging current waveforms. For short-circuit, the peak current of discharging can be up to 3 ~ 4 MA and rise time varies from 470 ns to 600 ns when the charging voltages of the generator are from 75 kV to 85 kV. With CQ-4 generator, some quasi-isentropic compression experiments under ramp wave loadings are done to demonstrate the ability of CQ-4 generator. And some experiments of launching high velocity flyer plates are also done on CQ-4. The experimental results show that ramp wave loading pressure of several tens of GPa on copper and aluminum samples can be realized and the velocity of aluminum flyer plate with size of 10 mm × 6 mm × 0.35 mm can be accelerated to about 11 km/s and the velocity of aluminum flyer plate with size of 10 mm × 6 mm × 0.6 mm can be up to about 9 km/s, which show that CQ-4 is a good and versatile tool to realize ramp wave loading and shock compression for shock physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.