Abstract
The alpine páramo of Chingaza National Park, Colombia, has a highly variable cloud regime typical of many tropical alpine areas. Yet, little information is available regarding the effects of such dynamic sunlight regimes on alpine temperatures. A close association between changes in incident sunlight and corresponding air (T a) and leaf (T l) temperatures occurred in two dominant species with strongly contrasting leaf form and whole-plant architecture. Spikes in sunlight incidence of >3000 μmol m−2 s−1 occurred during cloud cover and corresponded to increases in T l of 4–5 °C in a 1-min-interval in both species. Although T l was predominately above T a, during the day, depressions below T a of over 6 °C occurred during cloudy conditions when photosynthetic photon flux density (PFDs) was <400 μmol m−2 s−1. The greatest frequency (69%) of changes in incident sunlight (PFD s; over 2-min intervals) was less than 100 μmol m−2 s−1, although changes >1000 μmol m−2 s−1 occurred for 2.4% of the day, including a maximum change of 1512 μmol m−2 s−1. These data may be valuable for predicting the ecophysiological impact of climate warming and associated changes in future cloud regimes experienced by tropical alpine species.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have