Abstract

Tribofilm formation and growth play a vital role in friction reduction and antiwear enhancement. However, our understanding at the atomic level, particularly from a tribochemical viewpoint, is limited. Here, we elucidate α-lipoic acid ester tribofilm formation on ferrous interfaces using reactive molecular dynamics simulations. Our findings uncover a sequence where chemisorbed films initially develop through Fe-S bonding, followed by decomposition (C-O, C-S bonds) and polymerization reactions (S-S, S-O bonds). Thermal and mechanical forces collaboratively facilitate this process. The kinetic analysis demonstrates elevated activation volume exhibited a negative correlation with the reaction frequency difference. Normal stress boosts reactivity by encouraging the polymerization and reducing activation energy. This work offers a comprehensive understanding of α-lipoic acid ester tribofilm formation on ferrous interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.