Abstract
The quantum phase transition between a repulsive Luttinger liquid and an insulating Peierls state is studied in the framework of the one-dimensional spinless Holstein model. We focus on the adiabatic regime but include the full quantum dynamics of the phonons. Using continuous-time quantum Monte Carlo simulations, we track in particular the dynamic charge structure factor and the single-particle spectrum across the transition. With increasing electron-phonon coupling, the dynamic charge structure factor reveals the emergence of a charge gap, and a clear signature of phonon softening at the zone boundary. The single-particle spectral function evolves continuously across the transition. Hybridization of the charge and phonon modes of the Luttinger liquid description leads to two modes, one of which corresponds to the coherent polaron band. This band acquires a gap upon entering the Peierls phase, whereas the other mode constitutes the incoherent, high-energy spectrum with backfolded shadow bands. Coherent polaronic motion is a direct consequence of quantum lattice fluctuations. In the strong-coupling regime, the spectrum is described by the static, mean-field limit. Importantly, whereas finite electron density in general leads to screening of polaron effects, the latter reappear at half filling due to charge ordering and lattice dimerization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.