Abstract
Loads transfer in ballast track through contacts among randomly distributed ballast particles and have strong heterogeneity. Since the size ratio between ballast track and ballast particles is generally small, using averaged stress to describe the internal mechanical state in ballast track faces practical difficulties. For example, particle movements and high local concentration stress tend to be ignored. The inter-particle contact stress is crucial to evaluate the particle behaviors, such as abrasion, movements, and furtherly the performance of ballast track. However, the contact stress on ballast particles is hard to predict or measure. We conduct a full size model test to investigate the dynamic characteristics of longitudinal stress on ballast particles as well as different lateral regions under vertical cyclic loads with various loading magnitudes and frequencies. An obvious seesaw effect of longitudinal contact stress is observed: the stresses at some contact areas have the same phase with applied cyclic load while at other contact areas have an opposite phase. The seesaw effect of contact stress is then used to evaluate the rotational movements of ballast particles. The variation of contact area and stress of the ballast particles with loading magnitudes demonstrates that the rigid contact assumption is appropriate when analyzing the contact behavior of ballast particles. The cumulative probability distribution of contact stress with stress level can be described by an inversely proportional function, based on which the maximum contact stress can be estimated according to the longitudinal average stress. Besides, the lateral dispersion angle of the vertical loads in the ballast track is about 35°, which is independent of the given loading magnitudes and frequencies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have