Abstract
The enhanced volume of thermal plasma is produced by a multi-arc thermal plasma generator with three pairs of discharge electrodes driven by three directed current power suppliers. Combined with a high-speed camera and an oscilloscope, which acquire optical and electric signals synchronously, the dynamic behavior of different kinds of multi-arc discharge adjusted by the electrode arrangement is investigated. Also, the spatial distributions and instability of the arc discharge are analyzed in four electrode configurations using the gray value statistical method. It is found that the cathodic arcs mainly show a contracting state, while the anodic arcs have a trend of transition from shrinkage to a diffusion-like state with the increase of the discharge current. As a result of the adjustment of the electrode configuration, a high temperature region formed in the center of the discharge region in configurations of adjacent electrodes with opposite flow distribution and opposite electrodes with swirl flow distribution due to severe fluctuation of arcs. The discharge voltage rises with increased discharge current in this novel multi-arc plasma generator. It is also found that anode ablation mainly occurs on the conical surface at the copper electrode tip, while cathode erosion mainly occurs on the surface of the inserted tungsten and the nearby copper.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have