Abstract

The dynamic characteristics of existing wind turbine structures are usually monitored using contact sensors, which is not only expensive but also time-consuming and laborious to install. Recently, computer vision technology has developed rapidly, and monitoring methods based on cameras and UAVs (unmanned aerial vehicles) have been widely used. However, the high cost of UAVs and cameras make it difficult to widely use them. To address this problem, a target-free dynamic characteristic monitoring method for wind turbine structures using portable smartphone and optical flow method is proposed by combining optical flow method with robust corner feature extraction in ROI (region of interest). Firstly, the ROI region clipping technology is introduced after the structural vibration video shooting, and the threshold value is set in the ROI to obtain robust corner features. The sub-pixel displacement monitoring is realized by combining the optical flow method. Secondly, through three common smartphone shooting state to monitor the structural displacement, the method of high pass filtering combined with adaptive scaling factor is used to effectively eliminate the displacement drift caused by the two shooting states of standing and slightly walking, which can meet the requirements of structural dynamic characteristics monitoring. After that, the structural displacement is monitored by assembling the telephoto lens on the smartphone. The accuracy of displacement monitored by assembling the telephoto lens on the smartphone is investigated. Finally, the proposed monitoring method is verified by the shaking table test of the wind turbine structure. The results show that the optical flow method, combined with smartphones, can accurately identify the dynamic characteristics of the wind turbine structure, and the smartphone equipped with a telephoto lens is more conducive to achieving low-cost wind turbine structure dynamic characteristics monitoring. This research can provide a reference for evaluating the condition of wind turbine structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call