Abstract

The chicken lysozyme locus is regulated in oviduct and macrophages by a complex set of well-characterized cis-regulatory DNA elements. We determined the DNase I hypersensitive chromatin site pattern of the chromatin of the lysozyme locus in retrovirally transformed cell lines representing different stages of myelomonocytic cell differentiation. In the transformed multipotent progenitor stage and in erythroblasts, only a DNase I hypersensitive chromatin site at a silencer element located -2.4 kb upstream of the transcriptional start site is present. At the myeloblast stage DNase I hypersensitive chromatin sites are formed both at the distal enhancer located at -6.1 kb and at the promoter. Later in differentiation, at the monocytic stage, a second DNase I hypersensitive chromatin site appears at the medial enhancer located at -2.7 kb. Parallel with DNase I hypersensitive chromatin site formation at the medial enhancer, the DNase I hypersensitive chromatin site at the silencer element disappears. These chromatin rearrangements correlate with the mRNA expression of the gene that is undetectable in multipotent progenitors and maximal in a lipopolysaccharide-stimulated monocyte cell line. Our results show that the chromatin structure and the transcriptional activity of the gene are tightly coupled during commitment and maturation of the myelomonocytic lineage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.