Abstract

To determine the effects of different kinds of nitrogen fertilizer, especially high-efficiency slow-release fertilizers, on soil pH, nitrogen (N) and microbial community structures in an acidic celery soil, four treatments (CK, no N fertilizer; NR, urea; PE, calcium cyanamide fertilizer; and SK, controlled-release N fertilizer) were applied, and soil pH, total soil N, inorganic N, and soil microbial biomass C were analyzed. Phospholipid fatty acids (PLFAs) were extracted and detected using the MIDI Sherlock microbial identification system. The PE treatment significantly improved soil pH, from 4.80 to >6.00, during the whole growth period of the celery, and resulted in the highest celery yield among the four treatments. After 14 d application of calcium cyanamide, the soil nitrate content significantly decreased, but the ammonium content significantly increased. The PE treatment also significantly increased soil microbial biomass C during the whole celery growth period. Canonical variate analysis of the PLFA data indicated that the soil microbial community structure in the CK treatment was significantly different from those in the N applied treatments after 49 d fertilization. However, there was a significant difference (P<0.05) in soil microbial community structure between the PE treatment and the other three treatments at the end of the experiment. Calcium cyanamide is a good choice for farmers to use on acidic celery land because it supplies sufficient N, and increases soil pH, microbial biomass and the yield of celery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call