Abstract

Dynamic changes in the distribution of lipid and insoluble polysaccharide reserves of Pancratium maritimum L. (Amaryllidaceae) anthers were investigated throughout the successive stages of pollen development, using cytochemical methods, to determine whether the synthesis, transformation, and mobilization of reserve materials in developing anthers follow the regular pathway in angiosperms and support the physiological activities in developing pollen. Polysaccharides and lipid reserves exhibited a variable pattern of distribution from the sporogenous cell stage to the anthesis. Starch granules and lipid bodies were scarce in the cytoplasm of sporogenous cells, but their number increased significantly at the premeiotic stage. Conversely, starch and lipid reserves of meiocytes reduced at the early prophase of the first meiotic division, and then their amount showed fluctuations during the microsporogenesis. The cytoplasm of free and vacuolated microspores was poor regarding the polysaccharide and lipid reserves. However, at the late vacuolated microspore stage, small insoluble polysaccharides began to appear in the microspore cytoplasm, and their number increased remarkably in the cytoplasm of the bicellular pollen grain. During the maturation of pollen grains, polysaccharide reserves were replaced with lipids. The starch and lipid reserves of the staminal envelope also showed variations at different stages of the anther development. The dynamic changes in the polysaccharide and lipid reserves of P. maritimum anthers were consistent with the physiological activities such as differentiation, cell division and material synthesis that occur in the anther tissue at different stages of the male gametophyte development, and supported the normal pollen development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call