Abstract

ABSTRACTWe study Bayesian dynamic models for detecting changepoints in count time series that present structural breaks. As the inferential approach, we develop a parameter learning version of the algorithm proposed by Chopin [Chopin N. Dynamic detection of changepoints in long time series. Annals of the Institute of Statistical Mathematics 2007;59:349–366.], called the Chopin filter with parameter learning, which allows us to estimate the static parameters in the model. In this extension, the static parameters are addressed by using the kernel smoothing approximations proposed by Liu and West [Liu J, West M. Combined parameters and state estimation in simulation-based filtering. In: Doucet A, de Freitas N, Gordon N, editors. Sequential Monte Carlo methods in practice. New York: Springer-Verlag; 2001]. The proposed methodology is then applied to both simulated and real data sets and the time series models include distributions that allow for overdispersion and/or zero inflation. Since our procedure is general, robust and naturally adaptive because the particle filter approach does not require restrictive specifications to ensure its validity and effectiveness, we believe it is a valuable alternative for dealing with the problem of detecting changepoints in count time series. The proposed methodology is also suitable for count time series with no changepoints and for independent count data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call