Abstract

Cell seeding of three-dimensional polymer scaffolds is the first step of the cultivation of engineered tissues in bioreactors. Seeding requirements of large scaffolds to make implants for potential clinical use include: (a) high yield, to maximize the utilization of donor cells, (b) high kinetic rate, to minimize the time in suspension for anchorage-dependent and shear-sensitive cells, and (c) high and spatially uniform distribution of attached cells, for rapid and uniform tissue regeneration. Highly porous, fibrous polyglycolic acid scaffolds, 5-10 mm in diameter and 2-5 mm thick, were seeded with bovine articular chondrocytes in well-mixed spinner flasks. Essentially, all cells attached throughout the scaffold volume within 1 day. Mixing promoted the formation of 20-32-micron diameter cell aggregates that enhanced the kinetics of cell attachment without compromising the uniformity of cell distribution. The kinetics and possible mechanisms of cell seeding were related to the formation of cell aggregates by a simple mathematical model that can be used to optimize seeding conditions for cartilage tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.