Abstract

Based on the Budiansky-Roth motion criterion, a thin cylinder shell finite element model is established using the finite element software (ABAQUS) to systemically investigate the dynamic bucking behavior of single-walled carbon nanotubes, which is validated by the molecular dynamic model. It is shown that both the magnitude and duration of the impact load have a great influence on the critical buckling load. By comparing the buckling modes, it can be found that the stress wave propagation plays an important role on the buckling deformation. A local axisymmetrical buckling mode is observed at the beginning and then an asymmetrical buckling mode occurs because of the stress wave superposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.