Abstract

A recent analytical model describing the post-buckling behaviour of an I-section strut experiencing strong axis global–local buckling interaction is extended to investigate the effects of modifying the strut geometry. Using a combination of analytical and finite element (FE) methods, the global and local slendernesses are varied parametrically, in turn, to determine the geometries leading to regions of interactive behaviour. The effect of stress relieved initial global imperfections are also investigated. It is observed that the strut can exhibit one of five distinct post-buckling behaviours, the geometries for which are identified. The strut can exhibit global buckling only, local buckling only, global–local buckling interaction with either the global or local mode being triggered first or the most severe case where both global and local buckling modes are triggered simultaneously. The strut is found to be highly sensitive to initial imperfections in the interactive region; the implications for imperfection sensitivity on the design and the practical use of such components are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call