Abstract

We propose a novel dynamic bivariate peak over threshold (PoT) model to study the time-varying behavior of joint tail risk in financial markets. The proposed framework provides simultaneous modeling for dynamics of marginal and joint tail risk, and generalizes the existing tail risk literature from univariate dimension to multivariate dimension. We introduce a natural and interpretable tail connectedness measure and examine the dynamics of joint tail behavior of global stock markets: empirical evidence suggests markets from the same continent have time-varying and high-level joint tail risk, and tail connectedness increases during periods of crisis. We further enrich the tail risk literature by developing a novel portfolio optimization procedure based on bivariate joint tail risk minimization, which gives promising risk-rewarding performance in backtesting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.