Abstract

The dynamics of RDX single crystal under ramp wave loading is studied experimentally and numerically. The ramp wave loading experiments on RDX single crystal in the orientation of (210) and (100) within 15 GPa are carried out with the magnetic driven device CQ-4, which can provide a loading pressure waveform with a rising time of 450–600 ns. The particle velocity curves of the interface between RDX single crystal and LiF window are obtained with the photonic Doppler velocimetry (PDV). The velocity profiles show an obvious three-wave structure, indicating that the RDX undergoes physical processes such as elastic-plastic transition and α-to-<i>γ</i> phase transition in the loading section. The stress yield limits of different crystallographic orientations of RDX single crystal show obvious difference. The onset phase transition pressures in two crystallographic orientations are the same, which is between 3.5 GPa and 4.0 GPa. The pressure range of phase transition is between initial phase transition pressure and 5 GPa. The <i>γ</i> phase is stable from 5 GPa to 15 GPa. The Hayes multi-phase equation of state and non-equilibrium phase transition kinetic model are employed to simulate the experimental process, and the numerical results can well describe the experimental physical processes such as elastoplastic transformation and phase transformation in the loading section. The calculated results reveal that the correction of the bulk modulus with pressure is necessary under ramp wave compression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call