Abstract
The single-layer latticed cylindrical shell is one of the most widely adopted space-framed structures. In this paper, free vibration properties and dynamic response to horizontal and vertical seismic waves of single-layer latticed cylindrical shells are analyzed by the finite element method using ANSYS software. In the numerical study, where hundreds of cases were analyzed, the parameters considered included rise-span ratio, length-span ratio, surface load and member section size. Moreover, to better define the actual behavior of single-layer latticed shells, the study is focused on the dynamic stress response to both axial forces and bending moments. Based on the numerical results, the effects of the parameters considered on the stresses are discussed and a modified seismic force coefficient method is suggested. In addition, some advice based on these research results is presented to help in the future design of such structures.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have