Abstract
In recognizing the pervasive nonstationarity of hydrometeorological variables, a paradigm shift towards alternative analytical methodologies is imperative for refining hydroclimatic data modeling and prediction. We introduce a novel approach leveraging nonstationary Graphical Modeling and Bayesian Networks (NGM-BNs) tailored for hydrometeorological applications. Demonstrated through monthly streamflow forecasting in the Kashgar River Basin of China, our method illuminates the temporal evolution of network relationships, underscoring the dynamism inherent in both input variables and modeling parameters. The key to our approach is identifying the most suitable time horizon (MST) for model updates, which is intricately problem-specific and crucial for peak performance. This methodology not only unveils changing predictor significance across varying flow conditions but also elucidates the fluctuating temporal links between variables, especially under the lens of climate change, for instance, the growing impact of snowmelt on the Kashgar Basin’s streamflow. Compared to stationary counterparts, our nonstationary Bayesian framework excels in capturing extreme events by adeptly accommodating temporal shifts, outperforming traditional models including both stationary and nonstationary variants of Support Vector Regression (SVR) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.