Abstract

A theoretical analysis is followed to calculate the dynamic stress intensity factors (DSIFs) in transversely isotropic piezoelectric bi-materials, due to existence of a permeable interfacial crack, near the edge of a circular cavity. The model is subjected to dynamic incident anti-plane shearing (SH-wave) and the formulation based on Green's function method. Conjunction and crack-simulation techniques are applied to obtain DSIFs at the crack’s outer tip. Calculations are prepared based on FORTRAN language program. A comparison is accomplished between the present model and another model with a crack emerging from the cavity edge to calibrate the program. Calculating results showed the influences of the physical parameters, the structural geometry and the wave frequencies on the dimensionless DSIFs and how those affected the efficiency of piezoelectric devices and materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call