Abstract

The assembly of cluster-based π-stacked porous supramolecular frameworks presents daunting challenges, including the design of suitable cluster building units, control of the sufficient C-H···π interactions, trade-off between structural dynamics and stability as well as understanding the resulting collective properties. Herein, we report a cluster-based C-H···π interaction-stacked porous supramolecular framework, namely, Cu12a-π, consisting of Cu12 nanocluster as a 6-connected node, which is further propagated to a dynamic porous supramolecular frameworks via dense intralayer C-H···π interactions, yielding permanent porosity. In addition, Cu12a-π can be transformed into cluster-based nonporous adaptive crystals (Cu12b-NACs) via ligand-exchange following a dissociation-reassembly mechanism. Moreover, Cu12a-π can efficiently remove 97.2% of iodine from saturated iodine aqueous solutions with a high uptake capacity of 2.96 g·g−1. These prospective results positioned at cluster-based porous supramolecular framework and enlighten follow-up researchers to design and synthesize such materials with better performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.