Abstract

Field Programmable Gate Array (FPGA) architectures, such as Xilinx's Virtex-4 up to 7 series, have enabled partial and dynamic run-time self-reconfiguration for a long time. This feature enables the substitution of parts of a hardware design implemented on this re-configurable hardware, and therefore makes it possible for a system to adapt to the actual demands of applications. Dynamic Partial Reconfiguration (DPR) is an interesting technique that permits to share a part of the FPGA between different dedicated functions or hardware accelerators. Many domains may benefit from this technique including the Internet of Things (IoT), automotive industry, etc. However, many parameters, such as reconfiguration overhead, idle power consumption and performance trade-off, must be considered. In this paper, we provide a precise estimation of the power consumption when the DPR process is running in order to evaluate its influence on the performance of the global design. For this purpose, a Software/Hardware (SW/HW) system was implemented and the results were extracted in real-time using Zynq System on Chip SoC devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call