Abstract
<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> Today's field programmable gate array (FPGA) architectures, like Xilinx's Virtex-II series, enable partial and dynamic run-time self-reconfiguration. This feature allows the substitution of parts of a hardware design implemented on this reconfigurable hardware, and therefore, a system can be adapted to the actual demands of applications running on the chip. Exploiting this possibility enables the development of adaptive hardware for a huge variety of applications. A novel method for communication interfaces using look up table (LUT)-based communication primitives enables an exact separation of reconfigurable parts and a fast and intelligent bus-system. A new adaptive software/hardware reconfigurable system is presented in this paper, using a real application in the automotive domain implemented on a Xilinx Virtex-II 3000 FPGA to present results. </para>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.