Abstract

ABSTRACTThe rheology of yeasted bread doughs is a little‐studied field despite yeast's importance in developing bread structure. A method of thermally inactivating the yeast within mixed bread doughs was developed to overcome the difficulty of yeast fermenting during rheological measurements. Sample stabilization by preshearing of dough samples at a stress amplitude of 1 Pa at 1 Hz for 10 sec improved the reliability of small amplitude oscillatory shear measurements, and resting 20 min within the rheometer was sufficient to produce reliable and consistent observations. Small amplitude oscillatory shear measurements were unable to detect any differences between yeasted and nonyeasted doughs nor any changes in linear viscoelastic properties due to fermentation. However, large strain uniaxial elongation measurements of yeasted doughs revealed a significant progressive decrease in elongational viscosities with fermentation. Size‐exclusion HPLC analysis of yeasted doughs showed an increase in unextractable polymeric dough proteins, which were interpreted as evidence of cross‐linking and therefore a potential improvement in dough properties. The apparent contradictions between uniaxial elongation and SE‐HPLC studies of fermenting yeasted doughs can be attributed to gas bubbles within the dough interrupting the increasingly cross‐linked protein network, resulting in the rheological weakness observed for fermenting yeasted doughs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.