Abstract

In this paper, we consider the M/G/1 stochastic clearing queueing model in a three-phase environment, which is described by integro-partial differential equations (IPDEs). Our first result is semigroup well-posedness for the dynamic system. Utilizing a C0—semigroup theory, we prove that the system has a unique positive time-dependent solution (TDS) that satisfies the probability condition. As our second result, we prove that the TDS of the system strongly converges to its steady-state solution (SSS) if the service rates of the servers are constants. For this asymptotic behavior, we analyze the spectrum of the system operator associated with the system. Additionally, the stability of the semigroup generated by the system operator is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.