Abstract

Although Pingtung plain is an agriculturally developed region, its limited hydrologic conditions have restrained the maximization of its surface water resources. Due to the lack of proper management and sustainable utilization, groundwater has been overdrawn, causing serious land subsidence and seawater intrusion. The present paper presents a pilot study for artificially recharging groundwater using high-infiltration basins. Results of the geometric factor show that the large basin is ca. 6.8 times the size of the small one, with the infiltration volume almost approaching 1 m3/day/m2. In the groundwater variation, the MW-2 is located immediately below the infiltration basin; therefore, its water level rises more rapidly than that of MW-3. As for the infiltration volume, results of the experiment used the same basin since 2002, which shows that the volumes gradually decreased from 12,136 to 5,555 m3/day. This is particularly evident in 2005 when volume decrease was at a maximum ca. 2,000 m3/day. Finally, the infiltration rate decreased from 22.76 to 7.15 m/day. The difference in infiltration rate between 2003 and 2005 has a maximum variation from to 15.2 to 10.33 m/day. In 2003, the addition of sand caused the infiltration rate to fall to a minimum ca. 5.3 m/day. By extending the recharge time, the infiltration rate fell gradually similar to those identified from 2005 to 2007.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.