Abstract

The effects of wheel traffic on soil surface hydraulic properties, and consequent effects on erosion, following planting of vegetable crops in beds have not been widely studied. This paper describes two trials to quantify how wheel tracks influence infiltration and erosion rates, and assesses the value of cultivating wheel tracks for reducing erosion. The trials were carried out under natural rainfall, on Dystric Nitosols with clay loam texture and strong, stable structure. Net rates of erosion from onion ( Allium cepa L.) beds with cultivated or uncultivated inter-bed wheel tracks were measured with erosion pins and repeat topographic surveys of sediment trapped in silt fences. Infiltration rates in onion beds, cultivated and uncultivated wheel tracks, and changes in infiltration rates through winter, spring, and summer, were measured using the double-ring, ponded-water method. Differences in erosion rate were only measured in the second trial in which erosion rate from the uncultivated treatment was 21 Mg ha −1, compared to 1 Mg ha −1 for the cultivated treatment. Erosion occurred through mobilisation of soil along the edge and base of the wheel tracks, with no evidence of erosion of the onion beds. Most of the eroded soil comprised soil aggregates, with 75% between 0.25 and 4 mm in diameter, suggesting soil was transported in runoff along the wheel tracks as stable aggregates. Uncultivated wheel tracks had very low infiltration rates compared to onion beds and cultivated wheel tracks. The differences in infiltration rates between cultivated and uncultivated wheel tracks were consistent in both trials, with minor differences due to rainfall patterns and the implements used to cultivate wheel tracks. There were clear trends in infiltration rates through time, with rates in the uncultivated wheel tracks increasing during the growing season from 1.4×10 −7 to 2.1×10 −5 m s −1 and in onion beds from 1.1×10 −4 to 2.5×10 −4 m s −1 , while rates in the cultivated wheel tracks decreased from 1.7×10 −2 to 2.4×10 −3 m s −1 . The major increase of infiltration rate in uncultivated wheel tracks occurred after October when the soil surface began to dry out, and frequent wetting and drying cycles caused the compacted surface soil to crack. Most erosion occurred in the winter/early spring period when storm frequency and rainfall intensity was highest, and infiltration rates in the uncultivated wheel tracks lowest. Cultivating wheel tracks is a simple and effective practice to increase infiltration of rainfall and reduce erosion rates on clay-rich, strongly structured soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call