Abstract

A numerical method has been developed for the dynamic analysis of a tall building structure with viscous dampers. Viscous dampers are installed between the top of an inverted V-shaped brace and the upper beam on each storey to reduce vibrations during strong disturbances like earthquakes. Analytically, it is modelled as a multi-degree-of freedom (MDOF) system with the Maxwell models. First, the computational method is formulated in the time domain by introducing a finite element of the Maxwell model into the equation of motion in the discrete-time system, which is based on the direct numerical integration. Next, analyses for numerical stability and accuracy of the proposed method are discussed. The results show its numerical stability. Finally, the proposed method is applied to the numerical analysis of a realistic building structure to demonstrate its practical validity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.