Abstract

Material properties, geometry parameters and applied loads of the structure are assumed to be stochastic. Although the finite element method analysis of complicated structures has become a generally widespread and accepted numerical method in the world, regarding the given factors as constants can not apparently correspond to the reality of a structure. The direct Monte Carlo simulation of the stochastic finite element method(DSFEM) requires a large number of samples, which requires much calculation time and occupies much computer storage space [1]. Monte Carlo simulation by applying the Neumann expansion (NSFEM) enhances computational efficiency and saves storage in such a way that the NSFEM combined with Monte Carlo simulation enhances the finite element model advantageously [2]. The preconditioned Conjugate Gradient method (PCG) applied in the calculation of stochastic finite elements can also enhance computational accuracy and efficiency [3]. The TSFEM assumes that random variables are dealt with by Taylor expansion around mean values and is obtained by appropriate mathematical treatment [4, 14]. According to first-order or second-order perturbation methods, calculation formulas can be obtained [2, 5, 6,8, 9, 13, 15, 16]. The result is called the PSFEM and has been adopted by many scholars. The PSFEM is often applied in dynamic analysis of structures and the secondorder perturbation technique has been proved to be accurate and efficient. Dynamic reliability of a large frame is calculated by the SFEM and response sensitivity is formulated in the context of stiffness and mass matrix condensation [7]. Nonlinear structural dynamics are developed by the PSFEM. Nonlinearities due to material and geometrical effects have also been included [8]. By forming a new dynamic shape function matrix, dynamic analysis of the spatial frame structure is presented by the PSFEM [9]. It is significant to extend this research to the dynamic state. Considering the influence of random factors, the mechanical vibrations for a linear system are illustrated by using the TSFEM and the CG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.