Abstract
The mechanical harvesting of fruit for oil production in an intensive olive tree orchard is generally accomplished by applying vibration to the tree’s trunk. This vibration is consequently transmitted to the branches, causing the fruit to detach. Although this practice is commonly used, the effects on tree behavior under forced vibration are not firmly established. Dynamic analysis was performed on 17 olive trees (Olea europaea L.) growing in an intensively-managed orchard using modal testing techniques. Modal parameter identification was focused inside the range excitation frequency used by the most commonly available trunk shakers on the market. The olive trees featuring a low morphological variability and modal parameters were obtained for a representative olive tree. The first two modes of vibration of the main tree frame were identified with damping ratios of 26.9 and 17.1% and natural frequencies of 20.2 and 37.7 Hz, respectively. A third mode of vibration of less importance was found at a higher frequency. Therefore, many local modes of vibration were detected near these natural frequencies, primarily located on secondary branches. During the testing, the olive trees behaved like a damped harmonic oscillator with predominantly mass damping in these modes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have