Abstract
The purpose of this paper is to study dynamic analysis of composite laminated doubly-curved shells with various boundary conditions by a domain decomposition method. Multi-segment partitioning technique is used to establish the formulation based on the first-order shear deformation theory. Meanwhile, the interfacial potential energy is introduced to maintain the continuous condition on the contact surface of the adjacent segments. The displacement admissible functions for each doubly-curved shell segment are uniformly expanded to the double mixed series which is with the Fourier series along the circumferential direction and the orthogonal polynomials (i.e. Chebyshev orthogonal polynomial, Legendre orthogonal polynomials and Ordinary power polynomials) along the meridional direction. A series of numerical examples are given for the free vibration, steady-state vibration and transient vibration of laminated doubly-curved shells subject to different geometric and material constants. By comparing with the literature results and the results conducted by the general finite element program ABAQUS, the numerical results show that the present formulation has good computational accuracy and efficiency. Based on the verification, the effect of external forces, geometric and material parameters on dynamic analysis (free, steady-state and transient vibration) of laminated doubly-curved shells are also studied.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have