Abstract

A dynamic model for helical planetary gear train (HPGT) is proposed. Based on the model, the free vibration characteristics, steady-state dynamic responses and effects of design parameters on system dynamics are investigated through numerical simulations. The free vibration of the HGPT is classified into 3 categories. The classified vibration modes are demonstrated as axial translational and torsional mode (AT mode), radial translational and rotational mode (RR mode) and planet mode (P mode) followed by the characteristics of each category. The simulation results agree well with those of previous discrete model when neglecting the component flexibilities, which validates the correctness of the present dynamic model. The steady-state dynamic responses indicate that the dynamic meshing forces fluctuate about the average static values and the time-varying meshing stiffness is one of the major excitations of the system. The parametric sensitivity analysis shows that the impact of the central component bearing stiffness on the dynamic characteristic of the HPGT system is significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call