Abstract

This paper investigates the dynamic behaviors of a gear-rotor system with viscoelastic supports under effects of the gear eccentricity, the transmission error of gear mesh and the residual shaft bow. The investigated dynamic characteristics include system natural frequencies and steady-state response. The finite element method is used to model the system and Lagrangian approach is applied to derive the system equations of motion. The results show that the mass, the stiffness and the loss factor of the viscoelastic support will significantly affect system critical speeds and steady-state response. It needs larger loss factor and more rigid stiffness of the viscoelastic supports to suppress the systematic amplitude of resonance. As the results shown, the magnitude and phase angle of the residual bow have tremendous influence on first critical speed when the geared system mounted on stiff viscoelastic supports. The transmission error of the gear mesh is assumed to be sinusoidal with tooth passing frequency and it will induce multiple low resonant frequencies in the system response. It is observed that the excited critical speed equals to the original critical speed divided by gear tooth number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.