Abstract

The paper presents the dynamic behaviors of a geared rotor-bearing system under the effects of the residual shaft bow, the gear eccentricity and excitation of gear’s transmission error. The coupling effect of lateral and torsional motions is considered in the dynamic analysis of the geared rotor-bearing system. The finite element method is used to model the system and Lagrangian approach is applied to derive the system equations of motion. The dynamic characteristics including system natural frequencies, mode shapes and steady-state response are investigated. The results show that the magnitude of the residual shaft bow, the phase angle between gear eccentricity and residual shaft bow will significantly affect system natural frequencies and steady-state response. When the spin speed closes to the second critical speed, the system steady state response will be dramatically increased by the residual shaft bow for the in-phase case. Moreover the zero response can be obtained when the system is set on special conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.