Abstract

SUMMARYIn this paper, an analytical method is proposed to determine the dynamic response of 3‐D rectangular liquid storage tanks with four flexible walls, subjected to horizontal seismic ground motion. Fluid–structure interaction effects on the dynamic responses of partially filled fluid containers, incorporating wall flexibility, are accounted for in evaluating impulsive pressure. The velocity potential in which boundary conditions are satisfied is solved by the method of separation of variables using the principle of superposition. The impulsive pressure distribution is then computed. Solutions based on 3‐D modeling of the rectangular containers are obtained by applying the Rayleigh–Ritz method using the vibration modes of flexible plates with suitable boundary conditions. Trigonometrical functions that satisfy boundary conditions of the storage tank such that the flexibility of the wall is thoroughly considered are used to define the admissible vibration modes. The analysis is then performed in the time domain. Moreover, an analytical procedure is developed for deriving a simple formula that evaluates convective pressure and surface displacements in a similar rigid tank. The variation of dynamic response characteristics with respect to different tank parameters is investigated. A mechanical model, which takes into account the deformability of the tank wall, is developed. The parameters of such a model can be obtained from developed charts, and the maximum seismic loading can be predicted by means of a response spectrum characterizing the design earthquake. Accordingly, a simplified but sufficiently accurate design procedure is developed to improve code formulas for the seismic design of liquid storage tanks. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call