Abstract

AbstractTo overcome the deficiencies of large particle radius, strict vibration conditions, and low kinetic energy exchange rate of traditional particle dampers, it is proposed to organically combine the rack and pinion inerter device with a stacked single particle damper (SSPD) to form a novel stacked single particle‐inerter damping system (SSPIS). Based on a detailed analysis of the force state of particles at various stages, the vibration damping mechanism of SSPIS is analyzed, and a mechanical model of a single‐degree‐of‐freedom (SDOF) structure equipped with an SSPIS is established. The numerical simulation and analysis process of SSPIS is provided, and a parametric design method of inerter device based on the structural performance requirements is proposed. The accuracy of the theoretical mechanical model and numerical simulation analysis process of SSPIS is verified through shaking table tests of a single‐story steel frame, and the actual damping control effect of SSPIS on the controlled structure is investigated. Both test and theoretical results show that the numerical simulation analysis process of SSPIS is clear and accurate, and the mechanical model of the SSPIS‐SDOF structural system is highly accurate. The inerter device in SSPIS can significantly improve the momentum exchange efficiency between particles and structures, and SSPIS could adaptively adjust the particle radius size on demand compared with the traditional particle dampers, with a high damping frequency band, and can realize good damping control effect under the earthquake with various types of sites, which has expansive engineering application scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.