Abstract
A three-dimensional dynamic simulation analysis of a tapered roller bearing was performed using commercially available software. Without cage pocket shape simplification, the dynamic motion of the cage and rollers was calculated in six degrees of freedom. The motion of the cage and rollers was measured experimentally to verify the analysis. Under all axially loaded conditions, cage whirl was analytically predicted and experimentally confirmed. Whirl amplitude increased as the inner-ring rotational speed and axial-load magnitude increased. The maximum whirl amplitude reached the radial clearance between a roller and its pocket. Under combined load conditions, the cage also whirled. However, the whirl amplitude was smaller than only under axial load. Load distribution due to the addition of radial load to axial load equalized roller distribution. Equally distributed rollers limited the cage’s movable distance to circumferential clearance between a roller and its pocket.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have