Abstract

The transient analysis of a magnetoelectroelastic medium containing a crack is made under antiplane mechanical and inplane electric and magnetic impacts. The crack is assumed to penetrate through the solid along the poling direction. By using the Fourier and Laplace transforms, the associated mixed boundary value problem is reduced to a Fredholm integral equation of the second kind, which is solved numerically. By means of a numerical inversion of the Laplace transform, dynamic field intensity factors are obtained in the time domain. Numerical results are presented graphically to show the effects of the material properties and applied electric and magnetic impacts on the dynamic intensity factors of COD and stress, and dynamic energy density factors. The results indicate that except for the intensity factors of electric displacement and magnetic induction, other field intensity factors exhibit apparent transient feature. Moreover, they depend strongly on mechanical input as well as electric and magnetic impacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.