Abstract

Concentrating photovoltaic/concentrating solar power (CPV/CSP) systems suffer from varying irradiation and extreme working conditions. In this study, a dynamic physical model is developed for the CPV/CSP hybrid system to analyze the dynamic responses of several key parameters, such as the solar radiation saltation or linear variation to represent the typical weather variations. The results show that the hybrid system could rapidly reach the steady state in less than about 53 s after the solar radiation saltation increases or decreases by 10%. The response time reflects that the thermal hysteresis of the hybrid system is mainly determined by varying the outlet temperature of R134a from the solar thermal receiver. Meanwhile, when the solar radiation changes linearly, a lower gradient is beneficial to remit the thermal hysteresis of the hybrid system and improve the thermal stability, and the parameters could be treated as the steady state values with a gradient of less than 0.2 W m−2 s−1. Afterward, the quasi-steady state model was used to analyze the all-day dynamic performance of the hybrid system. It shows that the power output and the flow rate are directly related to the direct normal irradiance (DNI), while the outlet temperature of R134a vapor could be almost constant except for the starting and stopping periods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call