Abstract
Aerostatic bearings are of great importance for improving machining accuracy of a workpiece surface. The dynamics of air bearings and aerostatic spindle system in ultra-precision machine, which mainly causes mid-spatial waviness errors, has a great effect on surface topography. The dynamic coefficients of the thrust bearings were determined by adopting the perturbation method and finite difference method with MATLAB® software. In addition, the influences of the spindle speed and tilt angle conducted upon the dynamics of the thrust bearings were investigated in detail. The dynamic response of the spindle system, which is closely related to the performance of the thrust bearing and does not work only by the effect of the journal bearing, supported by pressured air film was obtained. The simulation analysis of spindle responses under cutting force and experiment results is well matched, and the analysis method proposed in this paper can be also applicable to other air bearing spindle systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have